

解决方案 | ICP 法测定碳化硅材料中的铁、镁、钛、铝、钙、钠含量

碳化硅(SiC)是由碳元素和硅元素组成的一种化合物半导体材料,是制作高温、高频、大功率、高压器件的理想材料之一。在电力电子、光电子、微波电子等领域中得到广泛应用。纯碳化硅是无色通明的晶体。工业碳化硅则有无色、淡黄色、黑色等。碳化硅多色的原因与各种杂质的存在有关。而各种杂质元素的量也直接决定碳化硅不同的应用,因此建立碳化硅各种微量杂质元素量的检测方法是很必要的。

碳化硅中微量元素分析主要采用原子吸收光谱法、电感耦合等离子体原子发射光谱(ICP-OES)法和电感耦合等离子体质谱(ICP-MS)法。本文根据国家标准GB/T3045-2017中电感耦合等离子体原子发射光谱测定的方法,经过检测条件的优化,建立了电感耦合等离子体原子发射光谱(ICP-OES)法测定碳化硅粉

末中铁、镁、钛、铝、钙、钠含量的方法,可供相关人员参考。

ICP-7700 型电感耦合等离子体发射光谱仪

实验部分

仪器设备与试剂

ICP-7700 型电感耦合等离子体发射光谱仪;

氢氟酸;

盐酸;

碳化硅样品。

仪器条件

仪器条件

元素	波长 (nm)	RF 功率 (w)	载气流量 (L/min)	等离子气 (L/min)	PMT 电压 (V)
Fe	238.204(1)	1100	0.80	13.7	700
Mg	285.213(1)	1100	0.80	13.7	600
Ti	334.941(1)	1100	0.80	13.7	600
Al	394.401(1)	1100	0.80	13.7	800
Ca	422.673(1)	1100	0.80	13.7	600
Na	588.995(1)	1100	0.80	13.7	700

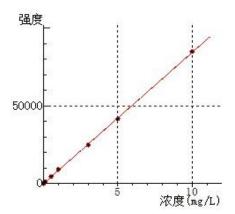
样品前处理

称取约 1.0g 样品(精确至 0.0001g),放入铂皿中。用少量水湿润,加 氢氟酸 10mL,于电炉上蒸发至干,再加氢氟酸 5mL 继续蒸发至干,保持 30min, 取下稍冷,加(1+1)盐酸 15mL,于电炉上加热 15min,稍冷,用中速滤纸 过滤用温热的(5+95)的盐酸洗涤铂皿及残留物 8 次,再用超纯水洗涤滤纸及

残留物 8 次。滤液及洗液收集于 100mL 容量瓶中,冷却后稀释至刻度,摇匀, 待测。

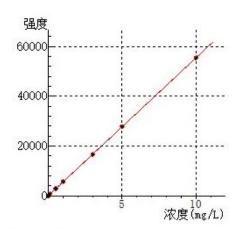
实验结果

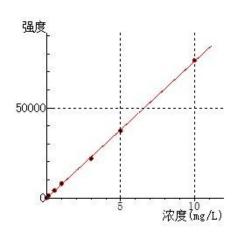
标准曲线


按下表配制各元素的系列标准溶液,待仪器工作稳定后,依次进样,根据浓度和吸光度,绘制标准曲线。

单位: mg/L

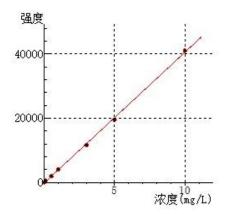
样品 元 素	空白标样	标样 1	标样 2	标样 3	标样 4	标样 5	标样 6
Fe	0.00	0.10	0.50	1.00	3.00	5.00	10.00
Mg	0.00	0.10	0.50	1.00	3.00	5.00	10.00
Ti	0.00	0.10	0.50	1.00	3.00	5.00	10.00
Al	0.00	0.10	0.50	1.00	3.00	5.00	10.00
Ca	0.00	0.10	0.50	1.00	3.00	5.00	10.00
Na	0.00	0.10	0.50	1.00	3.00	5.00	


Fe 标准曲线

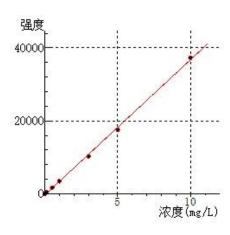

线性相关系数: 0.999845 一次曲线: y=8438.1045x+127.7141

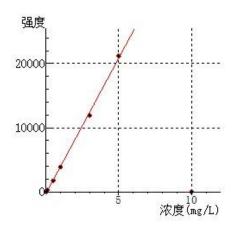
Mg 标准曲线

线性相关系数: 0.999991 一次曲线: y=5537.0283x+104.0594


Ti 标准曲线

线性相关系数: 0.999827 一次曲线: y=7595.4116x-46.7957


AI 标准曲线


线性相关系数: 0.999609 一次曲线: y=4071.5886x-165.4478

Ca 标准曲线

线性相关系数: 0.999395 一次曲线: y=3706.2991x-276.6852

Na 标准曲线

线性相关系数: 0.999319 一次曲线: y=4228.2656x-266.3358

分析结果

单位:%

元素	Fe	Mg	Ti	Al	Ca	Na
含量	1.567	0.255	0.117	3.473	0.8771	0.169

实验总结

本文建立了电感耦合等离子体原子发射光谱(ICP-0ES)法测定碳化硅粉末中铁、镁、钛、铝、钙、钠含量的方法。参照国家标准 GB/T3045-2017 中光谱条件并进行优化,采用东西分析 ICP-7700 型电感耦合等离子体发射光谱仪进行分析,实验结果表明,该方法操作简单、分析方便、结果准确,可以满足如产品质量控制、科研等需求,可供相关人员参考。